

User Defined Functions

User Defined Functions (UDF) allow you to add fields to Lookup Grids using SU-A for calculated values or
for data fields in files other than the primary file opened by the grid. A simple UDF contains up to 5

sections. Define variables, Open file, Find correct record, perform calculation, return results.

Template UDF
Create a text file using Notepad named UDF1.SRC (or use whatever number is the next available if you
already have UDF#.SRC files for other functions) that contains the following. The number in the file

name UDF#.SRC must match the number in the line func UDF# and the number entered on the SU-A
screen as described below. Numbers 1 through 40 are available. Lines in the UDF beginning with // are

comment lines. Any blue text is something that you would replace depending on the specifics of the UDF

you are creating.

//This is a Template UDF containing sample lines for the various sections of a UDF
//This first line defined the UDF by a number. Every UDF must have a unique number

func UDF1
//This next line is used if you will be performing any sort of calculation and need a field defined to store

//the results. The example given is a 9 place number with 2 decimal. The size includes the decimals plus

//the decimal point itself. You can define multiple variables.
Define variablename type N size 9 dec 2

//This next line is only needed if you need to open a file that the grid has not already opened. You are
//defining a File Handle, or Alias for the program to use to open the file. Replace filehandle.h with the

//name you want to use for your file

 define filehandle.h type I size 5
//Check to see if the file is already open so you only open it once, then open it

 if filehandle.h=0
 open filename fnum filehandle.h lock N

 endif
//Now find the correct record in the file. Index tells the program which index to use on the new file and

//field is the field in the primary file that links to the index in the new file.

 Findv M fnum filehandle.h key index val field
//Now perform any necessary calculation

 variablename = calculation
//Finally, return the results which will typically be the Variable calculated or a field in the other file that

//was opened

 ret variablename
//or

 ret fieldfromfile

Adding a UDF to a Grid

When you are on a lookup grid screen, the name of the grid is on the lower left corner.

In Queries - SU-A for the appropriate grid, add a column for the UDF with the Data field named UDF#()
where the # is the UDF number. The program will automatically populate the UDF column with U. Enter

type A for an Alpha field or N for Numeric and the size you want the column to be.

Sample UDFs

// UDF1 will get the Cust PO for Shipments grid
func UDF1

define invhead.h type I size 5
// File handle to open BKARHINV

 if invhead.h = 0
 openv 'bkarhinv' fnum invhead.h lock N

// this will open the file once

 endif
 findv M fnum invhead.h key bkar.inv.num val bkar.invl.invnm

// this finds the correct record
// return the value

ret bkar.inv.cusord

The UDF below will calculate the Net Discounted price of a shipment if there is a discount on the line.

// UDF2 calculates discounted unit price

 func UDF2

 define discprice type n size 13 dec 4
 discprice=bkar.invl.pprce * (1-(bkar.invl.pdisc/100))

 ret discprice

**

This UDF is extremely simple. It is getting a field from a different file that is already open and on the

correct record

// UDF3 will get the SO Number from the Sales Order header

func UDF3
ret BKAR.INV.SONUM

This UDF assumes a previous UDF was already called by another column on the grid and has already

defined the file handle

 // UDF4 assumes UDF1 was called and running uses same file handle. It returns the Invoice total

func UDF4
findv M fnum invhead.h key bkar.inv.invnum val bkar.invl.invnm

ret bkar.inv.total

This UDF needs to convert a text field to a numeric value to find the associated record in the other file

// UDF5 will get the Invoice number for the PO Receiver grid

func UDF5

 define apinv.h type I size 5
 if apinv.h = 0

 openv 'MKICLASS' fnum apinv.h lock N
 endif

 findv M fnum apinv.h key mkeclass.num val val(bkap.pol.invnum)
ret mkeclass.desc

